Monday, October 9, 2017

5 Myths of Dust Explosion Propagation

Fike explosion testing
Dust explosion propagation testing at Fike labs.
Abstracted from
"Dust Explosion Propagation: Myths and Realities"
by Fike Corporation

The unfortunate propensity of dust explosions to destroy entire facilities and claim lives has been reported in numerous past incidents.

Powder handling processes are often comprised of interconnected enclosures and equipment. Flame and pressure resulting from a dust explosion can therefore propagate through piping, across galleries, and reach other pieces of equipment or enclosures, leading to extensive damage.

While the ability of dust explosions to propagate has been widely recognized, some misconceptions lead to the false sense of security that explosion isolation is not required.

This post will enumerate, illustrate and unravel 5 common myths about explosion propagation. Download the full Fike White Paper here, or read it in full at the bottom of this post.

Myth #1: A large amount of dust is needed for an explosion to propagate.

Dust explosions do not need large amounts of fuel to propagate.

A 1 mm layer can create a dust explosion hazard in a typical room. The explosion only needed a 1/100 inch layer of dust on the ground to fully propagate.

Myth #2: A dust explosion starting in a vented vessel cannot propagate through connected pipes.

It is a common belief that protecting an enclosure, by means of venting or suppression, will affect explosion propagation in such a manner that no explosion isolation is needed at all. 

Although venting protects a vessel from the high pressures generated by an explosion, it does not necessarily prevent the explosion from being propagated through piping into other vessels.

Myth #3: A dust explosion cannot propagate against process flow. 

An argument also often heard is that a dust explosion cannot propagate against pneumatic process flow. 

An explosion is capable of traveling both with and against process flow, even over long distances.

Myth #4: A dust explosion weakens as it propagates.

Literature includes numerous discussions about explosion behavior in interconnected vessels. 

Experimental evidence has shown that explosions not only propagate, but become increasingly more damaging.

Myth #5: Small diameter pipes do not support dust explosion propagation.

Dust explosion propagation in small pipes has always been a controversial topic. The primary argument being that flame propagation is challenged due to heat loss to the pipe walls.

While conditions for dust explosions to propagate in relatively small diameter pipes are not yet fully established, their ability to propagate has been clearly demonstrated by several researchers.

Contact Flow-Tech with any questions regarding explosion protection testing, isolation valves, vents and systems at or call 410-666-3200.

Saturday, September 30, 2017

Campus Metering: Why Meter?

Instrumentation Energy Management
Schools, universities, medical centers and federal building
use instrumentation for energy management.

Energy and water managers have long known the value of metered data. With recent advances in energy and water metering and information systems resulting in increased functionality at lower costs, obtaining these data in a cost-effective manner is now a standard practice. Whether energy and water resource managers are trying to comply with legislated and mandated metering requirements, or looking to apply accepted building management best practices, such as utility bill verification or benchmarking, today’s metering technologies can provide the information needed to meet energy and water goals, save money, and improve building operations.

Metering of energy and water utilities has seen an increase in interest, application, and technology
Clamp-on flow meter
Clamp-on flow meter (Flexim)
advancement in both the private and the public sectors. One significant driver of this heightened interest is the ongoing modernization of the nation’s electric infrastructure with the move toward the smart grid and smart meters. Another significant driver, specific to the Federal sector, includes the legislative mandates for metering of Federal buildings.

The Business Case for Metering

The application of meters to individual buildings and energy-intensive equipment provides facility managers and operators with real-time information on how much energy has been or is being used. This type of information can be used to assist in optimizing building and equipment operations, in utility procurements, and in building energy budget planning and tracking.

It is important to keep in mind that meters are not an energy efficiency/energy conservation technology per se; instead, meters and their supporting systems are resources that provide building owners and operators with data that can be used to: 
Flow computer
Flow computer (KEP)
  • Reduce energy and water use
  • Reduce energy and water costs
  • Improve overall building operations 
  • Improve equipment operations
How the metered data are used is critical to a successful metering program.

Depending on the type of data collected, these data can enable the following practices and functions:
  • Verification of utility bills
  • Comparison of utility rates
  • Proper allocation of costs or billing of reimbursable tenants 
  • Demand response or load shedding when purchasing electricity under time-based rates 
  • Measurement and verification of energy project performance 
  • Benchmarking building energy use 
  • Identifying operational efficiency improvement opportunities and retrofit project opportunities 
  • Usage reporting and tracking in support of establishing and monitoring utility budgets and costs, and in developing annual energy reports. 
Most of the metered data uses listed above will result in a reduction in energy and water costs. The degree of cost reduction realized will depend on the unit cost of the energy and water being saved and on the effectiveness with which the site analyzes the data and acts upon its findings and recommendations. Examples of additional metering benefits can include:
Inline flowmeter
Thermal dispersion flow meter (FCI)
  • Supporting efforts to attain ENERGY STAR and/or green building certifications 
  • Promoting tenant satisfaction by providing information that tenants find useful in managing their operations 
  • Prolonging equipment life (and reducing capital investment requirements) and improving its reliability by verifying the efficient operation of equipment 
  • Assessing the impact of utility price fluctuations prior to or as they happen, allowing sites/agencies to address budget shortfalls on a proactive basis. 
Metering options will change in response to new material, electronic, and sensor development, as well as new and additional requirements for real-time data information. Future expansion of a metering system should be considered, as well as introduction of new metering and sensor technologies, based on the best available information, but be careful not to over design a system, thus unnecessarily increasing its cost.

Contact Flow-Tech with questions about improving your facilities energy management systems.  

Tuesday, September 12, 2017

ADMAG TI Series AXW Magnetic Flowmeter Maintenance Manual

ADMAG TI Series AXW Magnetic Flowmeter
ADMAG AXW Magnetic Flowmeter
The ADMAG AXW™ series of magnetic flow meters has been developed based on Yokogawa's decades-long experience in Magnetic Flowmeters. The AXW series continues the tradition of high quality and reliability that has become synonymous with the Yokogawa name.

The AXW series is ideal for industrial process lines, and water supply / sewage applications. With outstanding reliability and ease of operation, developed on decades of field-proven experience, the AXW will increase user benefits while reducing total cost of ownership.

Sizes are available from 500 to 1800 mm (20 to 72 inch.) with a wide liner selection such as PTFE, Natural hard rubber, Natural soft rubber, and Polyurethane rubber lining. Offering industry standard process connections such as ASME, AWWA, EN, JIS, and AS flange standards. A submersible version is also available.

This manual provides the basic guidelines for maintenance procedures of ADMAG TI (Total Insight) Series AXW magnetic  flowmeters.

In Virginia, contact Flow-Tech for any Yokogawa instrument requirement you may have. Call 804-752-3450 or visit

Monday, September 11, 2017

Industrial Level Measurement

Point level
Point level switch (FCI)
In many industrial processes, the measurement of level is critical. Depending on the nature of the material being measured, this can be a simple or complex task. Several different technologies for sensing level are briefly explained here.

Direct Method

The direct method of level measurement calculates levels instantly using physical properties, like buoyancy and fluid motion. Beginning from the simplest, the following are the three main types:
  • Sight glass type
  • Float type
  • Magnetic level gauge
Sight glass measures liquid in tanks. A scaled glass tube with metallic covering it is attached to the top and bottom edges of the tank and, as the liquid moves up and down, the level in the tube fluctuates in the same way.

Float type measurement makes use of buoyancy: a float device follows the liquid level while sitting atop it. As the liquid moves so does the float device; a cable, attached to the top of the device, is rigged to a calibrated scale with a pointer in the middle. The up and down movements pull the string which pulls the pointer, thus showing where the liquid level is.

 A magnetic level gauge looks like a thick thermometer and is attached to the end of a vertical chamber. This vertical chamber contains a magnetic float, a permanent magnet, which floats on the top of the liquid level in the tank.

There is one more thing also attached to the outside of the tank: an indicating scale with small metallic strips. These strips are white and red sided flippers, rotating 180° whenever the float magnet attracts them while passing over. Whenever the float magnet is above, the strips will flip red side up, indicating the tank’s level.

Indirect Method

In the indirect method of level measurement, the level of a liquid is calculated by a variable that changes according to the level. There are four main types:

  • Pressure gauge type
  • Differential pressure type
  • Ultrasonic type
  • Radar type
The pressure gauge is a simple method; a pressure gauge is attached near the bottom of tank and pressure, exerted by the tank, is calculated. The gauge changes in time with the tank’s liquid pressure, and the measurement is made according to the height of the liquid.

Radiometric Level
Radiometric Level (RONAN)
The differential pressure method (DP method) is another widely used method in industry. This method requires a DP transmitter and a port; these two parts are connected to the external tank at opposite ends. The differential pressure in the tank is measured between the DP transmitter at the bottom and the port at the top; the output of the differential pressure calculated by the DP transmitter is proportional to the liquid level. The more liquid in the tank, the more pressure is at the transmitter; the less liquid in the tank, the more pressure at the port.

The ultrasonic method is a no-contact type. A transmitter is mounted atop the tank and ultrasonic sound waves are sent from the transmitter toward the surface of the measured fluid. An echo of the wave is calculated and the time it took for the wave to reach its end goal from the transmitter becomes its distance. The time of the length of the distance is then calibrated in terms of the level of process material.

The radar method is a no-contact type and it uses electromagnetic waves. Electromagnetic waves are sent through a transmitter to the surface of the measured material. There is a receiver toward the bottom of the tank which takes a portion of the energy sent from the wave and then reflects it back toward the surface of the medium. The reflected energy then becomes calibrated into level measurement.

Industrial level control requires deep knowledge and understanding of many process variables, such as media compatibility, interfaces, head pressures, material densities, and mechanical considerations. It's always recommended that an experienced consultant be involved with the selection and implementation of any industrial level device.

Wednesday, September 6, 2017

Fluid Components Series FS10 Quick Setup Mode Demonstration

FS10 Series Flow Switch and Monitor
FS10 Series Flow Switch and Monitor
The FS10 Series Flow Switch and Monitor is manufactured by Fluid Components, Inc.

The FS10A is a universal flow switch and monitor specifically designed for gas and liquid process analyzer sampling systems. The FS10A is a fast responding, highly repeatable sensor which installs easily into a standard tube tee fitting or new SP76 (NeSSI) modular manifold.

The FS10i is a universal flow switch and flow monitor designed for simple insertion into ½” (13mm) or larger diameter pipes and square ducts. The unit is suitable for either liquid or air/gas applications. It is fast responding and highly repeatable to both increasing and decreasing flow rate changes.

The video below explains the procedure for accessing and setting the quick setup modes.

For more information on any Fluid Components, Inc. (FCI) flow meter in Maryland and Virginia, call 410-666-3200 or visit

Thursday, August 31, 2017

Process Instrument Calibration

Meriam MFC5150 HART Communicator
Meriam MFC5150
HART Communicator
Calibration is an essential part of keeping process measurement instrumentation delivering reliable and actionable information. All instruments utilized in process control are dependent on variables which translate from input to output. Calibration ensures the instrument is properly detecting and processing the input so that the output accurately represents a process condition. Typically, calibration involves the technician simulating an environmental condition and applying it to the measurement instrument. An input with a known quantity is introduced to the instrument, at which point the technician observes how the instrument responds, comparing instrument output to the known input signal.

Even if instruments are designed to withstand harsh physical conditions and last for long periods of time, routine calibration as defined by manufacturer, industry, and operator standards is necessary to periodically validate measurement performance. Information provided by measurement instruments is used for process control and decision making, so a difference between an instrument's output signal and the actual process condition can impact process output or facility overall performance and safety.

In all cases, the operation of a measurement instrument should be referenced, or traceable, to a
universally recognized and verified measurement standard. Maintaining the reference path between a field instrument and a recognized physical standard requires careful attention to detail and uncompromising adherence to procedure.

Calibration gauges
Calibration gauges (Permacal)
Instrument ranging is where a certain range of simulated input conditions are applied to an instrument and verifying that the relationship between input and output stays within a specified tolerance across the entire range of input values. Calibration and ranging differ in that calibration focuses more on whether or not the instrument is sensing the input variable accurately, whereas ranging focuses more on the instrument's input and output. The difference is important to note because re-ranging and re-calibration are distinct procedures.

In order to calibrate an instrument correctly, a reference point is necessary. In some cases, the reference point can be produced by a portable instrument, allowing in-place calibration of a transmitter or sensor. In other cases, precisely manufactured or engineered standards exist that can be used for bench calibration. Documentation of each operation, verifying that proper procedure was followed and calibration values recorded, should be maintained on file for inspection.

As measurement instruments age, they are more susceptible to declination in stability. Any time maintenance is performed, calibration should be a required step since the calibration parameters are sourced from pre-set calibration data which allows for all the instruments in a system to function as a process control unit.

Typical calibration timetables vary depending on specifics related to equipment and use. Generally, calibration is performed at predetermined time intervals, with notable changes in instrument performance also being a reliable indicator for when an instrument may need a tune-up. A typical type of recalibration regarding the use of analog and smart instruments is the zero and span adjustment, where the zero and span values define the instrument's specific range. Accuracy at specific input value points may also be included, if deemed significant.

The management of calibration and maintenance operations for process measurement instrumentation is a significant factor in facility and process operation. It can be performed with properly trained and equipped in-house personnel, or with the engagement of subcontractors. Calibration operations can be a significant cost center, with benefits accruing from increases in efficiency gained through the use of better calibration instrumentation that reduces task time.

Contact Flow-Tech at 410-666-3200 in Maryland and 804-752-3450 in Virginia for any calibration question or requirement.

Monday, August 28, 2017

Installation and Operation of the Brooks Instrument GF40

Brooks Instrument GF40
Brooks Instrument GF40
The Brooks® GF40 (elastomer seal) thermal mass flow controller (MFC) and thermal mass flow meter (MFM) achieves unprecedented performance, reliability, and flexibility in many gas flow measurement and control applications.

At the heart of the GF40 is Brooks’ patented 4th generation MultiFloTM capable device. MultiFlo overcomes a long-standing limitation of many thermal MFCs – when changing gas types, a simple correction factor, such as the ratio of heat capacities between the calibration gas and new gas, cannot account for accuracy-robbing viscosity and density differences. The Brooks MultiFlo database is built on thousands of native gas runs to establish correction functions that account for both thermal and physical differences among gases making the GF40 Series among the most accurate and flexible MFCs/MFMs available today. The Brooks GF40 Series is the perfect choice for customers who use thermal mass flow controllers or thermal mass flow meters on a variety of gases, who need to change gas type frequently, or who need to re-range while preserving gas measurement and control accuracy.

We have provided a Brooks GF40 installation and operation manual below for your convenience. To download your own Brooks GF40 IOM (PDF), click this link.