Showing posts with label mass flow. Show all posts
Showing posts with label mass flow. Show all posts

Thursday, June 29, 2017

Writing LabVIEW™ Programs for Brooks® Mass Flow Controllers (MFCs)

Brooks Instrument has been innovating thermal mass flow technology for decades, continually launching new products and enhancing existing systems to unlock new levels of thermal mass flow precision, responsiveness, accuracy and repeatability.

LabVIEW™ is systems engineering software for applications that require test, measurement, and control with rapid access to hardware and data insights. LabVIEW simplifies hardware integration so that you can rapidly acquire and visualize data sets from virtually any I/O device, whether by NI or a third-party.

Brooks® MFCs are known for:
  • Industry-best range of products to meet widest application needs
  • Innovative MultiFlo™ technology lets one device change gas types and ranges without removing the device from the system and improving actual process gas accuracy
  • Complete product range includes both elastomer sealed and metal sealed options
  • Ultra-high purity devices engineered to satisfy thin film, semiconductor and other high-tech industry requirements.
The video below provides step-by-step instructions on writing a LabVIEW™ program for Brooks Instrument MFC's.

For more information, visit http://www.Flowtechonline.com/Brooks. In Maryland call 410-666-3200. In Virginia call 804-752-3450.

Thursday, February 9, 2017

Mass Flow Controller White-paper: A New Class of MFCs with Embedded Flow Diagnostics

Brooks G40
Mass Flow Controller
(courtesy of Brooks Instrument)
A white-paper by Brooks Instrument outlining recent trends in multi-sensor measurements within a mass flow controller are reviewed, with a focus on controller self-diagnostics.

For more information in Maryland or Virginia, visit www.flowtechonline.com or call 410-666-3200 (MD) or 804-752-3450 (VA).

Wednesday, September 21, 2016

Connecting Brooks Instrument Thermal Mass Flow Controllers with LabVIEW™

Brooks MFC
Brooks MFC
LabVIEWBrooks Instrument manufactures mass flow controllers with a well earned reputation for accuracy and reliability. LabVIEW™’s integrated development environment for building measurement and control systems is used in laboratory, university, and pilot manufacturing plants around the world. Together, Brooks MFCs and LabVIEW make a great combination for measuring and controlling mass flow, as well as for for data acquisition. Below are some typical communications scenarios used between Brooks MFCs and the LabVIEW™control platform.

Analog Signal Interface

In many situations LabVIEW™ software users also use analog to digital
I/O cards. With analog input cards, users can run their mass flow controllers utilizing a standard 0-5 volt or 4-20 mA analog signaling via LabVIEW™. This is a time-tested, traditional approach and is recommended for applications without the availability of digital control systems.

RS485 Digital Interface

Brooks Instrument mass flow devices configured with RS485 communications (must have the ‘S’ communications option) provide RS485 digital communications via a 15-pin D connector. The RS485 digital signal is passed directly to a computer running LabVIEW™ through a serial RS485 converter. Brooks models GF40, GF80 and SLA Series mass flow controllers are available with the ‘S’ communications option.

Its valuable to note that there is also a free set of VI file for use with LabVIEW from Brooks. These can be loaded directly into the LabVIEW™ application and provide the basics required to create a LabVIEW control interface using the S-Protocol digital command structure. The VI files are available for download from the Brooks Instrument website.

Another communications alternative is using Brook’s Smart DDE (Dynamic Data Exchange) software tool to create links between the LabVIEW™ application and the GF40, GF80 or SLA Series flow, control, and configuration parameters. Additionally, the user can leverage Windows applications (Excel, Word, Access) and programming languages ( C++, C#, Visual Basic) and SCADA programs from suppliers such as Allesco and Millennium Systems International. No knowledge of the mass flow device S-Protocol command structure is required. With Smart DDE, the user gets direct access to the required data fields. While not a complete turnkey option, it greatly reduces the amount of code required to communicate between LabVIEW and the mass flow controller.

DeviceNet Digital Signal Interface

Brooks models GF40, GF80 and SLA, configured for DeviceNet digital communications, can also be controlled via the LabVIEW™ application provided a National Instruments DeviceNet interface card, associated drivers, and software are used. These additional items support the development of application interfaces using LabVIEW™ software for Windows and LabVIEW™ Real-Time.

According to the National Instruments website:

National Instruments DeviceNet for Control interfaces are for applications that manage and control other DeviceNet devices on the network. These interfaces, offered in one-port versions for PCI and PXI, provide full master (scanner) functionality to DeviceNet networks. All NI DeviceNet interfaces include the NI-Industrial Communications for DeviceNet driver software, which features easy access to device data and streamlined explicit messaging. Use a real-time controller such as PXI and NI industrial controllers to create deterministic control applications with the NI LabVIEW Real-Time Module.

As always, discussing the best communication protocol for your application with an authorized applications expert is highly recommended. For more information on mass flow controllers with analog or digital communications contact:

Flow-Tech, Inc.
MD: 410-666-3200
VA: 804-752-3450
www.flowtechonline.com

Monday, January 11, 2016

Mass Flow Rate and More From Multivariable Transmitter - Process Measurement and Control

Multivariable mass flow measurement transmitter
Model EJX 910A Multivariable Transmitter
Courtesy of Yokogawa
Industrial process measurement and control is charged with continually producing better, faster, and cheaper results with increasing levels of safety. For applications requiring mass flow rate measurement of fluids or tank level, a multivariable transmitter has much to offer when it comes to improving outcomes throughout your industrial process operation.

The EJX 910 series from Yokogawa provides the latest generation of digital sensing and processing to provide fast and accurate process measurement of temperature, static pressure, differential pressure, and dynamically compensated mass flow. Flow accuracy as high as +/-1.0% is achievable, along with:

±0.04% Differential Pressure Accuracy
±0.1% Static Pressure Accuracy
±0.9°F External Temperature Accuracy



Some other highlights include:

  •  Industry leading fast response time for safe and accurate process control.
  • Yokogawa's specially developed DPharp digital sensor providing simultaneous static and differential pressure measurement, digital accuracy, and no A/D conversion error.
  • LCD display can be rotated in 90 degree increments. External zero adjustment screw and range setting switch enhance field setup.
  • Improved mass flow accuracy of +/- 1% from multivariable operation in one device with dynamic compensation.
  • Signal characterizer for measuring level in irregular shaped tanks.
  • Utilizes industry recognized open communication protocols for easy integration into existing installations.

The manufacturer's white paper, describing precisely how the unit works and how it can be applied, is below. Browse the white paper for some additional detail, but consult with a product specialist to explore how to improve your process measurement and control performance. They have even more information than is provided here which, when combined with your process knowledge, is sure to generate a positive solution to any challenge.



Friday, December 4, 2015

Interesting Facts About Differential Pressure Cone Flow Meters

industrial differential pressure flow measurement device
Differential Pressure Cone Flow Meter
Courtesy McCrometer, Inc.
Requirements for measurement of flow exist throughout the industrial process control field. The applications are varied and vast. As a result, there are a number of technologies available for flow measurement and an even larger array of manufacturers providing devices and instrumentation that can be used to measure fluid flow.

Selecting the measurement technology that will provide appropriate performance for a process measurement application is an initial challenge for every process design. In order to accomplish this task, it follows that a well rounded understanding of the potentially positive or negative attributes for each methodology is necessary.

Differential pressure is one method of indirectly measuring fluid flow. It measures the change in pressure created as media flows past an obstruction in the fluid path, which, when combined with other information and calculation can be used to derive a measurement of mass flow. Like all measurement methods, there are applications where this one excels over others and some where it may not be as advantageous as alternate methods.

One manufacturer of differential pressure flow measurement devices is McCrometer. The company has been manufacturing DP flow measurement devices for over thirty years and has over 75,000 installations worldwide. In the company's own words, their flagship V-Cone product...
is an advanced differential pressure instrument, which is ideal for use with liquid, steam or gas media in rugged conditions where accuracy, low maintenance and cost are important.
Cutaway view of industrial cone flow meter
Cone Meter - Cutaway view
Courtesy McCrometer, Inc.
I have included below an interesting piece that provides, in brief form, some facts that will add to your knowledge of cone meters. Read the piece below. Contact a product specialist for any additional information you may need, or to discuss how this technology can make a positive impact on your industrial process measurement operations.