Showing posts with label clamp-on. Show all posts
Showing posts with label clamp-on. Show all posts

Tuesday, March 13, 2018

The Ideal Flow Monitoring System for a Drinking Water Supply Network

FLEXUS by FLEXIM
The ideal drinking water flow monitoring system.
Wouldn't it be great if you had a closely woven system of measuring points that monitor flow rates in the drinking water supply network as seamlessly as possible and leaks and hydrological problem zones would be detected and corrected as quickly as possible?

Unfortunately the reality looks somewhat different. Installation of conventional flow measuring points in a drinking water supply network incurs high costs and an enormous amount of effort to maintain.

FLEXUS by FLEXIM

FLEXIM is a technology leader in the field of non-invasive flow measurement with clamp-on ultrasonic technology. FLEXUS clamp-on ultrasonic systems measure according to the transit time difference method. Since the transducers are mounted on the outside of the pipe no interventions in the pipeline system are necessary. the drift free and long-term stable acoustic measuring method detects even the smallest flows, even those that lie below the response threshold of conventional flow meters. Therefore, fluxes is the ideal instrument for monitoring minimum flow rates at night, and thus the key to effective consumption and leakage monitoring.

With FLEXUS, a flow measuring point can be conveniently setup within half a working day without supply interruptions with out affecting traffic, and without a heavy lifting device.  For the installation of the ultrasonic measuring system, only temporary access to the pipe has to be created.  The service engineer first checks the pipe dimensions. Sturdy mounting devices made of stainless steel ensure that the flow transducers are permanently stable when installed. Even on the transducers themselves, nothing can break. The cable and sensor are firmly connected. No plug can come loose. Water or dirt cannot penetrate anywhere. The ultrasonic transducers have IP68 protection and can operate continuously underwater. Coupling pads, made of elastic plastic, ensure permanent optimal acoustic coupling to the pipe without any wear. Thanks to their unique internal temperature compensation, FLEXIM transducers do not show any drift during temperature fluctuations. Setup of the measuring point on the pipe is completed by positioning and fixing the ultrasonic transducers. Now only the connection to the measuring transmitter, housed in the switch cabinet, has to be created. The calibration data of carefully paired and calibrated transducers are stored on one chip and are automatically transferred to the measuring transmitter. A zero point calibration on site is not necessary. Where nothing flows, FLEXUS reliably measures zero.

Measurement in Progress

The measuring results are either transmitted by cable or wirelessly via GSM to the process control system. Practical self-diagnosis functions allow for safe evaluation of the measurement quality. Done. Now the measuring point can be refilled underground since the pipe line remained completely intact. There was no need to flush the pipe and no need for the final leak test. In the office, the measured values can be visualized and evaluated on a computer.

Thursday, December 28, 2017

Measurement and Calibration Principle of FLEXIM's Non-Invasive Ultrasonic Flowmeter

The principle of FLEXIM's ultrasonic flow measurement of liquids and gases relies on the propagation of ultrasonic wave signals into the medium. This measurement method exploits the fact that the transmission speed of an ultrasonic signal depends on the flow velocity of the carrier medium. Similar to a swimmer swimming against the current, an ultrasonic signal moves slower against the flow direction of the medium than when in flow direction.

For the measurement, two ultrasonic pulses are sent through the medium, one in the flow direction, and a second one against it. The transducers are alternatively working as an emitter and a receiver. The transit-time of the ultrasonic signal propagating in the flow direction is shorter than the transit-time of the signal propagating against the flow direction. A transit-time difference, Δt, can thus be measured and allows the determination of the average flow velocity based on the propagation path of the ultrasonic signals. An additional profile correction is performed by our proprietary algorithms, to obtain an exceptional accuracy on the average flow velocity on the cross-section of the pipe - which is proportional to the volume flow, and when temperature and pressure compensated, to the mass flow.

Since ultrasounds propagate in solids, the transducers can be mounted onto the pipe. The measurement is therefore non-invasive, and thus no cutting or welding of pipes is required for the installation of the transducers.

For more information about FLEXIM, contact Flow-Tech at 410-666-3200 or visit https://flowtechonline.com.

Sunday, March 27, 2016

Campus Metering: Improve the Energy Efficiency of Your Building with Clamp-on Flowmeters

Clamp-on, Ultrasonic Flowmeter
Clamp-on, Ultrasonic Flowmeter
(courtesy of FLEXIM)
Today there are many reasons to focus on energy optimization efforts. Due to rising cost of fossil fuels and environmental concerns, decreasing overall energy consumption, decreasing operational costs, improving HVAC performance, improving building quality and certification rating is becoming increasingly important. Facility Managers are stepping up their efforts to find efficiency and savings related to heating, ventilation and air conditioning systems, including chillers, boilers, and air-handling components. Energy-efficiency is a top priority for institutional and commercial organizations and will continue to grow in importance for the foreseeable future.

Finding new ways to reduce energy consumption in buildings without compromising comfort and indoor air quality is an ongoing challenge. One of the most significant options a facility has is to add BTU energy metering that is able to accurately meter the new performance of upgraded chillers, pumps, and chilled water distribution system.

Superior precision can be achieved by using clamp-on flowmeters with specially matched and paired ultrasonic transducers and temperature probes that control the heating and cooling flows within the building. These devices offer a superior solution with a high degree of reliability and repeatability for both temporary and permanent applications.

The biggest challenge in retro-fitting flowmeters in existing piping structures are the very tight piping typical of chiller plants, existing valves, vents, and pipe bends. Clamp-on ultrasonic flowmeters provide an easy work-around. Since the clamp-on ultrasonic transducers are simply mounted on the outside of the pipeline, plant operation is not affected in any way during retrofitting. The reworking of existing piping systems for flowmeter installation is not required, making the clamp-on flow meters an ideal solution for retrofitting existing facilities.

Designed with temperature compensation to eliminate inaccuracies or drift through deviations, and powerful correction algorithms to compensate for non-ideal pipe conditions, these energy flow meters offer an accuracy of 1% or better on the flow rate. Plus, low flow velocities can be detected reliably and accurately.

The advantages for choosing clamp-on ultrasonic flowmeters for HVAC retrofit are:

  • Reliable, non-invasive recording of thermal energy (BTU) flows
  • Practically wear-free measurement without measurement drift, unaffected by potential coating formations
  • Works independently of the conductivity of the medium
  • Simple set-up of measuring points without any interruption of operation
  • Minimum installation effort
  • Compact measurement system, can also be easily installed on measuring points which are difficult to access

Research demonstrates the addition and/or upgrade of metering existing HVAC systems can offer effective solutions for energy conservation and thermal comfort, with possible energy savings in the range of 30-40%.

For more information on BTU/Campus/Building Metering, contact:

Flow-Tech, Inc.
10940 Beaver Dam Rd
Hunt Valley, MD 21030
Ph: 410-666-3200

Central VA Office
10993 Richardson Rd#13
Ashland, VA 23005
Ph: 804-752-3450