Showing posts with label analyzers. Show all posts
Showing posts with label analyzers. Show all posts

Tuesday, October 18, 2016

Process Analyitcal Measurement - Moisture Control In Sample Gas

instrument air sample gas moisture control filter
Sample Gas Dryer
Perma Pure
Sample gas used for analysis in process control operations will often need some conditioning in order to accommodate the input needs of the analyzer. A common requirement is to maintain a certain moisture content in the gas sample, requiring either addition or removal of moisture from the sample stream.

It is advantageous, even necessary, that any conditioning done to the sample gas have no impact on the component(s) subject to analysis. One technology provides for specific removal or addition of moisture (water) in a simple fashion, with no impact on other sample constituents.

Perma Pure gas sample dryers and humidifiers use Nafion® tubing, with a selectively permeable membrane that permits only the passage of water molecules. By controlling relative vapor pressure around the exterior of the tube, moisture can be drawn from, or added to, the sample gas stream. The simple device employs no moving parts and the vapor pressure differential is easily achieved using shop instrument air or other sources readily available.

Share your gas analysis challenges and requirements with product application experts, combining your process knowledge with their product expertise to develop effective solutions.
diagram of sample gas processing connections and parts


Tuesday, July 19, 2016

Practical Issues of Combustion Oxygen Measurement Specifically Related to NOx Emissions

NOx emissions
Power plants and NOx emissions.
Power plants concerned with lowering NOx emissions are making tremendous changes to accommodate EPA regulatory requirements. A substantial number of these changes include the expansion and upgrade of the plant combustion oxygen measurement equipment. There is a striking relationship between the number of NOx reductions projects and the sales quantity of insitu oxygen detectors. The reason is that power plant betterment groups, operators, boiler manufacturers and engineering firms understand the direct relationship between NOx and excess air in the combustion process.

An area of daily practical importance to boiler operators and I&C teams are the common problems with insitu oxygen measurements. This paper focuses on the practical issues of combustion oxygen measurement as they relate to specifically to fuel usage and NOx emissions.

Read the entire white paper, courtesy of Yokogawa Corporation of America below:

Thursday, December 31, 2015

Soil, Water, Air and Technical Gas Testing with Draeger Tubes

Draeger Tube
Draeger Tube and Analyzer
Natural, ambient air is chemically a gas mixture that consists of 78 % nitrogen, 21 % oxygen 0.03% carbon dioxide as well as argon, helium and other rare gases in trace concentrations. In addition there is water vapor, e. g. humidity. If the concentrations of the components change, or a foreign gas is added, we no longer have natural air. When these changes occur, the potential for adverse health effects exist.

The spectrum of other so-called air components can be extremely broad. It can range from the pleasant fragrance of a good perfume to the over powering stench of hydrogen sulfide. Likewise, the hazard of each “air pollutant” varies considerably. The type of substance, its concentration and duration of occurrence, as well as probable synergistic effects with certain gas compounds must all be considered. In addition, there are many air pollutants which cannot be perceived by human senses because they are colorless and odorless (e. g. carbon monoxide).

If the composition of the natural air changes in any way, it should be tested, to determine the substance which caused this change. Even substances with distinctive odors cannot be reliably assessed with the aid of the olfactory nerve in the nose. The olfactory nerve can become desensitized after a certain period of time or repeated exposure, making it impossible to smell even immediately dangerous concentrations. After a few hours we do not even perceive the pleasant fragrance of our own perfume and high concentrations of hydrogen sulfide escape from the sense of smell even after a very short while.

Subjectively, one persons sense of smell may be more sensitive to certain air pollutants than others. In many cases substances are noticed in very low concentrations which, even after a long-term exposure do not necessarily cause adverse health effects. In general the sense of smell is sufficient in determining the presence of air pollutants, but the need exists for an objective gas analysis method. Gas measurement serves as a technical aid and an assessment of the concentration is only possible with a gas measurement device. To determine the hazard potential of a gas it is necessary to measure its concentration and to consider the duration of exposure and other parameters such as the type of work being performed.

If only the concentration of an air pollutant is known it is difficult to evaluate the degree of the hazard. For Example, there is a degree of uncertainty regarding the health effects of cigarette smoking. The synergistic effect of the more than 800 single substances in cigarette smoke and the physiological condition of the smoker are all factors in determining the toxicological influence to the individual.

An important prerequisite to determining the potential of any gaseous air pollutants is the determination of the concentration with a suitable gas measurement device. The kind of device to be used depends on which gases have to be measured and how often. Much to the dismay of both the user and the manufacturer, there is no universal instrument which measures all gases or vapors. The variety of substances is too wide for a single technique to measure all possible air pollutants. The more chemically complex a substance is, the more complex the gas measurement technique.

It may be that more than one measurement device or measurement method may be employed, each based on different operational principles. The instrumentation industry offers various devices for this purpose which can be used, individually or in combination on the measurement task:
  • flame ionization detectors - photo ionization detectors - gas chromatographs
  • infrared spectrometers 
  • UV-VIS photometers
  • warning devices for explosion hazards
  • Dräger-Tubes
  • Dräger Chip-Measurement-System
  • laboratory analysis in conjunction with sampling tubes or gas wash bottles (impinger) - mass spectrometers
  • substance selective instruments with e. g. electrochemical sensors
To read more, or download the entire handbook, see below:

Monday, October 19, 2015

Welcome to Flow-Tech's Maryland & Virginia's Process Control Blog

Virginia and Maryland Process Control
Serving Maryland and Virginia
Flow-Tech, Inc. has been specifying and applying process instrumentation and control valves in the Maryland and Virginia markets for over 40 years. Flow-Tech's outstanding growth in sales and reputation is directly a result of our consultative sales approach, delivered by our team of knowledgeable and experienced Sales Engineers.

We see this blog as an extension of that process where today's customer can learn and discover at their own time and place, narrow the selection of products and vendors, and then  arrange for me focussed presentation with a salesperson.

This blog will be populated with post we think you will find interesting and education in the area of process instrumentation and control. It will be updated frequently, so please check back often.