Showing posts with label McCrometer. Show all posts
Showing posts with label McCrometer. Show all posts

Friday, February 16, 2018

Campus Metering: Advantages of Using V-Cone for Measuring Chilled Water & Steam in Hospitals, Universities, and Institutions

McCrometer's V-Cone
Typical diagram of V-Cone installation.
(Click for larger view).
McCrometer's V-Cone® Flow Meter is an advanced differential pressure instrument, which is ideal for use with liquid, steam or gas media in rugged conditions where accuracy, low maintenance and cost are important. The V-Cone is especially useful in tight-fit and retrofit installations. 

In most instances the use of V-Cones associated with chillers for chilled water in large institutional users is a matter of space, accuracy, and turndown. The V-Cone needs very little upstream and downstream piping requirements, allowing it to be used in spaces where other meters cannot be used, or to replace existing flowmeters that never proved accurate because of space limitations. 

In many large universities and other facilities, such as hospitals and airports, across the U.S., the reason for initial interest and subsequent purchases of V-Cones to measure Chilled Water was to fit within the confines of the existing and new buildings that were being used to house the chillers. Additionally, the second most important reason was the delivered accuracy. In the past, most usage had been ignored, but with the rising costs associated with cooling, each individual building must be accountable for individual use. This is just good fiscal responsibility and management from an energy balance standpoint. Turndown was an issue because of seasonal swings in usage based on climate and population in the buildings at any particular time. Therefore, the meters needed to be able to have a large flow span (turndown), which remained accurate during continuous use.
McCrometer's V-Cone
Internal view of V-Cone.

V-Cones have recently been selected for Steam service for mostly the same reasons as they are selected for Chilled Water. Space limitations in new and/or older buildings are a serious concern. V-Cones have the smallest piping requirements of practically any flowmeter and continue to deliver accurate measurement, so they are fiscally responsible and cost effective. Additionally, in steam, they allow condensate and/or other small particulate matter to pass without affecting the measurement, thus giving much better accuracy instantaneously and over time. 

They are very rugged flowmeters which require little or no maintenance, and have a very long expected life even in “tough” service like steam. They can be designed with great turndown (span) and therefore can accommodate changes in flowrates based on demand, seasonal or from other factors.

For more information on V-Cone flowmeters, contact Flow-Tech in Maryland at 410-666-3200, in Virginia at 804-752-3450, or by visiting https://flowtechonline.com.

Monday, February 27, 2017

A New Twist on Old Magnetic Flow Meter Technology

FPI Mag Meter
FPI Mag Meter
The McCrometer FPI Mag employs a ground breaking configuration. Unlike full-bore mags, the FPI Mag is placed in the middle of the flow stream where an array of coils and electrodes measure at numerous points spanning the diameter of the pipe.

The FPI Mag's accuracy rivals that of conventional mag meters, so there's no compromise on performance. Save up to forty-five percent on installation and total cost of ownership. The FPI Mag is the only flow meter of its kind that eliminates the need for heavy equipment and excessive manpower necessary to support installation. Installing an FPI Mag is easy -  there's no need to shut down or drain the lines. The FPI Mag even fits in compact spaces with limited access points. Prep for conventional mag meter installation requires heavy equipment and draining lines. Conventional mag meter installation is costly complicated and time-consuming.

Benefits of using the McCrometer FPI Mag Meter:
  • Save up to 45% on installation and total cost of ownership
  • No downtime servicing or replacing the FPI Mag Meter
  • Over $5000 savings
  • 6 hours of labor saved

Monday, May 16, 2016

An Economical, No Maintenance Gas and Liquid Flow Measurement Solution for Tight Spots

Wafer-Cone
Wafer-Cone Internal View
Engineers with small line size processes rely on the versatile are challenged finding a flowmeter with accuracy and repeatability. Many times orifice plates are specified for the job. An excellent alternative to an orifice plate, and one that should be carefully considered, is the Wafer-Cone, manufactured by McCrometer.

Unlike an orifice plate, the Wafer-Cone has no sharp edges so extensive maintenance and inspection are not required. The flangeless Wafer-Cone® is a space-saving unit is that is easy to install and ideal for tight-space installations and retrofits.  The cone conditions the flow so the Wafer-Cone requires minimal upstream or downstream pipe runs and can be installed virtually anywhere in a piping system.

Ideal for small line sizes and with no moving parts, no replacement parts or scheduled maintenance,
Wafer-Cone
Components of Wafer-Cone
this meter offers a low cost of ownership and long life.

This device also offers interchangeable cones for flexibility in accommodating changing flow conditions without the need for recalibration. When flow conditions change over time, the cone can be removed and replaced with a cone at a different beta ratio eliminating the need to buy a new meter.

Finally, the Wafer-Cone is available with remote or direct mount configuration. The direct mount option minimizes installation labor while ensuring accuracy. Direct mounting the transmitter eliminates impulse lines, which not only lowers installation costs but also reduces potential leak points by more than 50 percent. Simple plug-and-play mounting ensures the meter is installed correctly the first time and eliminates a potential source of ow measurement errors.

Wafer-Cone with Transmitter
Wafer-Cone
with Transmitter
Common applications are:
  • Natural Gas Wellheads
  • Gas, Water, and CO Injection
  • Gas Lift
  • Compressor Anti-Surge
  • Fuel Gas
  • Separator Discharge
  • Biogas Reactors
  • Cooling Systems
  • Plant HVAC
  • Process Gas Lines
Advantages of the Wafer-Cone
  • No straight pipe runs
  • Maximum flexibility
  • Economical
  • Accuracy to +/- 1%
  • Repeatability to 0.1%
  • Machineable in any material
  • No moving parts, low maintenance

Tuesday, February 9, 2016

Understanding the V-Cone Flow Meter

VM V-Cone System
VM V-Cone System by McCrometer
The VM V-Cone System, manufactured by McCrometer, acts as its own flow conditioner, fully conditioning and mixing the flow prior to measurement.

The key benefit to the VM V-Cone flow meter’s unique design is its ability to provide reliable system accuracy of +0.5% of rate over a 10:1 flow range under the most difficult flow conditions. Readings are precise and reliable, even under changing flow conditions and start/stop flows.

Once installed, the primary element rarely, if ever, needs to be removed from service. This leaves only the flow transmitter with the occasional recalibration over its lifetime. The V-Cone family of flow meters have a proven long life with installations exceeding 20 years without the need to be removed or re-calibrated.

The VM V-Cone flow meter’s enhanced performance is due to the shape and positioning of the measuring element. The VM V-Cone flow meter’s unique design centers the differential pressure cone centrally in the flow tube. This placement reshapes the flow profile, giving the V-Cone the smallest footprint of any in-line flow meter. This conditioned flow creates a low amplitude, high frequency signal that is accurate to ±0.5% of rate.

This video visually demonstrates the advantages of the V-Cone flow meter.


For more information, contact:
Flow-Tech
10940 Beaver Dam Rd.
Hunt Valley, MD 21030
Ph: 410-666-3200

Thursday, January 28, 2016

Advanced Differential Pressure Flowmeter Technology

McCrometer V-Cone
McCrometer V-Cone
The McCrometer V-Cone® flowmeter accurately measures flow over a wide range of Reynolds numbers, under all kinds of conditions and for a variety of fluids. It operates on the same physical principle as other differential pressure-type flowmeters, using the theorem of conservation of energy in fluid flow through a pipe.

The V-Cone’s remarkable performance characteristics, however, are the result of its unique design. It features a centrally-located cone inside the tube. The cone interacts with the fluid flow, reshaping the fluid’s velocity profile and creating a region of lower pressure immediately downstream of itself. The pressure difference, exhibited between the static line pressure and the low pressure created downstream of the cone, can be measured via two pressure sensing taps. One tap is placed slightly upstream of the cone, the other is located in the downstream face of the cone itself. The pressure difference can then be incorporated into a derivation of the Bernoulli equation to determine the fluid flow rate. The cone’s central position in the line optimizes the velocity profile of the  ow at the point of measurement, assuring highly accurate, reliable  ow measurement regardless of the condition of the  ow upstream of the meter.

The V-Cone is a differential pressure type flowmeter. Basic theories behind differential pressure type flowmeters have existed for over a century. The principal theory among these is Bernoulli’s theorem for the conservation of energy in a closed pipe. This states that for a constant  ow, the pressure in a pipe is inversely proportional to the square of the velocity in the pipe.

Simply, the pressure decreases as the velocity increases. For instance, as the fluid approaches the V-Cone meter, it will have a pressure of P1. As the fluid velocity increases at the constricted area of the V-Cone, the pressure drops to P2. Both P1 and P2 are measured at the V-Cone’s taps using a variety of differential pressure transducers. The Dp created by a V-Cone will increase and decrease exponentially with the flow velocity. As the constriction takes up more of the pipe cross-sectional area, more differential pressure will be created at the same flowrates.

Friday, December 4, 2015

Interesting Facts About Differential Pressure Cone Flow Meters

industrial differential pressure flow measurement device
Differential Pressure Cone Flow Meter
Courtesy McCrometer, Inc.
Requirements for measurement of flow exist throughout the industrial process control field. The applications are varied and vast. As a result, there are a number of technologies available for flow measurement and an even larger array of manufacturers providing devices and instrumentation that can be used to measure fluid flow.

Selecting the measurement technology that will provide appropriate performance for a process measurement application is an initial challenge for every process design. In order to accomplish this task, it follows that a well rounded understanding of the potentially positive or negative attributes for each methodology is necessary.

Differential pressure is one method of indirectly measuring fluid flow. It measures the change in pressure created as media flows past an obstruction in the fluid path, which, when combined with other information and calculation can be used to derive a measurement of mass flow. Like all measurement methods, there are applications where this one excels over others and some where it may not be as advantageous as alternate methods.

One manufacturer of differential pressure flow measurement devices is McCrometer. The company has been manufacturing DP flow measurement devices for over thirty years and has over 75,000 installations worldwide. In the company's own words, their flagship V-Cone product...
is an advanced differential pressure instrument, which is ideal for use with liquid, steam or gas media in rugged conditions where accuracy, low maintenance and cost are important.
Cutaway view of industrial cone flow meter
Cone Meter - Cutaway view
Courtesy McCrometer, Inc.
I have included below an interesting piece that provides, in brief form, some facts that will add to your knowledge of cone meters. Read the piece below. Contact a product specialist for any additional information you may need, or to discuss how this technology can make a positive impact on your industrial process measurement operations.