Thursday, November 30, 2017

Differential Flowmeters: How They Work

Differential Flowmeters
The differential flow meter is the most common device for measuring fluid flow through pipes. Flow rates and pressure differential of fluids, such as gases vapors and liquids, are explored using the orifice plate flow meter in the video below.

The differential flow meter, whether Venturi tube, flow nozzle, or orifice plate style, is an in line instrument that is installed between two pipe flanges.

The orifice plate flow meter is comprised the circular metal disc with a specific hole diameter that reduces the fluid flow in the pipe. Pressure taps are added on each side at the orifice plate to measure the pressure differential.

According to the Laws of Conservation of Energy, the fluid entering the pipe must equal the mass leaving the pipe during the same period of time. The velocity of the fluid leaving the orifice is greater than the velocity of the fluid entering the orifice. Applying Bernoulli's Principle, the increased fluid velocity results in a decrease in pressure.

As the fluid flow rate increases through the pipe, back pressure on the incoming side increases due to the restriction of flow created by the orifice plate.

The pressure of the fluid at the downstream side at the orifice plate is less than the incoming side due to the accelerated flow.

With a known differential pressure and velocity of the fluid, the volume metric flow rate can be determined. The flow rate “Q”, of a fluid through an orifice plate increases in proportion to the square root the pressure difference on each side multiplied by the K factor. For example if the differential pressure increases by 14 PSI with the K factor of one, the flow rate is increased by 3.74.


Monday, November 27, 2017

Small Line Size Flow Measurement without Moving Parts

FCI-ST75
ST75 Series

Excellent for Gas Sub-Metering, Boiler Fuel-To-Air Mixing, Chemical Injection & Much More


Plant and process engineers who need accurate flow detection or measurement of air, gases, or liquids in smaller pipe sizes will find several diverse flow instrument solutions available from Fluid Components International (FCI).  Using advanced, ultra-reliable thermal dispersion flow measurement technology with no-moving parts, FCI’s ST75 Series and ST100L Air/Gas Flow Meters and FLT93L Flow Switch provide ideal solutions for use in 0.25 to 2 inch (DN6 to DN50) pipe or tubing. They excel where low flows, wide-turndowns, dirty fluids, HazEx or harsh installations are among the applications factors.

These flow instruments offer many advantages for service in a wide range of applications: plant, building or lab gas sub-metering, small inlet air/gas feed lines for boilers, gas relief valve monitoring, chemical injection, compressed air systems, CO-Gen or CHP gas fuel measurement and control, sampling systems, and more.  Many small process line applications are difficult to measure reliably with high repeatability due to variations in temperature and pressure, and have wide flow rates.  FCI’s thermal flow meters and switches are unaffected by, or have on-board compensation for, temperature and pressure changes and, in addition to superior detection of low flow rates, provide 100:1 turndown as a standard feature.  FCI’s highly reliable, small line air/gas flow meters and aid/gas/liquid flow switches combine state-of-art electronics technology with application fluid-matched flow sensors and laboratory calibration in rugged packages designed for the most demanding plant operating environments. 
FLT93L Flow Switch
FLT93L Flow Switch

Thermal flow sensor technology developed by FCI relies on the relationship between flow rate and the cooling effect.  With no moving parts and minimal invasiveness, these meters and switches provide a highly repeatable, accurate, low cost, easy-to-install solution and there’s virtually no maintenance required over a long life.  FCI’s ST75 Series Air/Gas Flow Meters are ideal for lines sizes from 0.25 (6mm) to 2 inches (51mm).  Gas or air measurement accuracy is available up to 1% of reading, ±0.5% full scale. The ST75 Meters feature a wide 100:1 turndown and will measure from 0.01 to 559 SCFM [0,01 to 950 NCMH] depending on pipe size.

The meter’s electronics are housed in a rugged, IP67 rated enclosure with dual conduit ports in either NPT or M20 threading. The instrument comes standard with dual 4-20 mA outputs and a 500 Hz pulse output. The models ST75A and ST75AV include HART as well as NAMUR compliant 4-20 mA outputs and a SIL compliance rating and 2 year warranty.  Global agency approvals for Div.1/Zone 1 HazEx installations include FM, FMc, ATEX, IECEx, EAC and more. 

The best-in-class ST100L Air/Gas Flow Meter is a next generation instrument that combines feature- and function- rich electronics with advanced flow sensors. It is designed in a spool piece configuration in 1-, 1.5- or 2-inch tubing, schedule 40 and schedule 80 piping.  It measures air/gas flows from 0.0062 to 1850 SCFM [0.01 to 3,140 Nm3/h] with superior accuracy to ± 0.75% reading, ± 0.5% full scale; and repeatability of ± 0.5% reading. 

ST100L Air/Gas Flow Meters
ST100L Air/Gas Flow Meters
Whether the plant’s output needs are traditional 4-20 mA analog, frequency/pulse or advanced digital bus communications such as HART, Foundation Fieldbus, PROFIBUS, or Modbus, the ST100L is available with any of them.  Its digital bus communications also are certified and registered devices with HART and Foundation Fieldbus.  Global approvals include:  FM, FMc, ATEX, CE, CSA, IECEx, EAC, NEPSI and Inmetro.  It SIL compliant and is an all-welded design to ensure no leakage when used with volatile gases like hydrogen. 

For applications lacking enough straight-run, both ST75 Series and ST100L can be supplied with Vortab flow conditioning built-in to the spool-piece flow body. Its wide selection of available process connections include male and female threaded and flanges are standard.   The FLT93L Flow Switch is a dual function, dual trip point/alarm point precision switch.  It is field settable for trip point on flow rates and temperature, and as any high or low value of either flow or temperature.  The FLT93L’s setpoint range is: 0.015 to 50 cc/sec [0.0009 to 3 fps] for water-based liquids; 0.033 to 110 cc/sec [0.002 to 6.6 fps] for hydrocarbon-based liquids; and 0.6 to 20,000 cc/sec [0.036 to 1198 fps] for air and gases.

Trip point accuracy is ± 0.5% reading or ± 0.04 fps [± 0.012 mps] (whichever is higher) in liquids and ± 0.5% reading or ± 2 fps [± 0.06 mps] (whichever is higher in air or gases.   The FLT93 has been designed for use and longest service life in the most rugged, harsh operating environments. It is available in both aluminum and stainless steel IP67 rated housings, carries HazEx agency approvals for FM, FMc, ATEX, IECEx, EAC, Inmetro, NEPSI, meets CRN and European PED and is SIL 2 compliant. It is available in numerous wetted materials and process connection options, and has universal DC/AC power supply. 

For more information on Fluid Components, Inc. products in Maryland and Virginia, contact Flow-Tech at 410-666-3200 or visit https://www.flowtechonline.com.

Monday, November 20, 2017

Understanding Mass Flow Controller (MFC) Metrology & Calibration

Mass flow controllers (MFCs) precisely deliver fluids, mainly process gases, into bioreactors and other process systems. The stable, reliable and repeatable delivery of these gases is a function of four key factors:
  • The quality and sophistication of the MFC’s design.
  • The application set-up, which covers the acceptable level of  fluid delivery accuracy a given process requires.
  • Metrology: what specific techniques are used to test, measure and con rm MFC accuracy.
  • Calibration checks: how an MFC is calibrated on an ongoing basis.
It’s common to extensively investigate an MFC’s technical characteristics and capabilities, as well as analyze and ensure that the MFC technology chosen fully satis es each operation’s unique process requirements. Equally important is the role that metrology, which includes testing reference standards and calibration practices, plays in the performance and long-term value of biopharmaceutical process equipment MFCs. In the eBook below, we will provide a deeper understanding of metrology’s role in how MFCs are used and managed in these systems. This includes:
  • The key elements of MFC accuracy and why calibration is important
  • How MFC calibration reference standards are used and why selecting the right standard matters
  • The role that “uncertainty” plays in calibrating MFCs
  • Factors that can lead to improper calibration
Please review the eBook embedded in this post below, or if you prefer, you can download your own PDF copy here - Understanding Mass Flow Controller (MFC) Metrology & Calibration. For more information about MFC's, contact Flow-Tech at https://www.flowtechonline.com or call 410-666-3200.

Saturday, November 11, 2017

Clamp-on, Transit-time Difference Ultrasonic Flowmeters Ideal for HVAC Retrofit and New Construction

Transit-time Difference Ultrasonic Flowmeters
Transit-time Difference Ultrasonic Flowmeters (Flexim)
There are many reasons for large commercial buildings, medical centers, museums, airports, sports complexes, federal institutions and military complexes to invest in building energy optimization efforts. Better and more efficient operation of HVAC equipment can reduce the buildings energy and operational costs significantly.

Controlling flow, temperature and pumps can provide energy cost savings of over 20%. Many campus energy managers believe that the biggest user of energy in any complex is the HVAC system, and the key to saving energy in HVAC systems is an accurate and reliable flow metering capability.

Better efficiency of the heating and cooling infrastructure of a building also leads to more environmentally friendly buildings, something that has become a social prerogative of building owners and operators.  Older buildings were not built with BTU meters as metering requirements were added to buildings through increased regulations.

Submetering the buildings heating and cooling systems have become increasingly more important, as building owners are both mandated to meter these utilities and have a financial interest in the accuracy of these BTU measurements. The problem historically is that nearly all flow meters are designed for gradual failure due to direct contact with the fluids they are monitoring and the particulate accumulation on the sensors.

Clamp-on, transit-time difference ultrasonic flowmeters are the ideal retro-fit flowmeter, and also should receive strong consideration for new building construction. Transit-time difference ultrasonic clamp on flowmeters exploit the fact that the transmission speed of an ultrasonic signal depends on the flow velocity of the carrier medium - kind of like a swimmer swimming against the current. The signal moves slower against the flow than with it.

How Transit-time Difference Ultrasonic Flowmeters Work

The flowmeter sends ultrasonic pulses through the process medium - one in the same direction as the
flow and one in the opposite direction. The flowmeter's transducers alternate as emitters and receivers. The transit time of the signal going with the flow is shorter than the one going against. The flowmeter measures transit-time difference and determines the average flow velocity of the process medium. Since ultrasonic signals propagate in solids, the flowmeter can be conveniently mounted directly on the pipe and measure flow non-invasively.

Contact Flow-Tech with your questions about any flow measurement application. Reach them at 410-666-3200, or visit http://www.flowtechonline.com.

Tuesday, October 31, 2017

Understanding HART Protocol

A current loop using sensing and
control transmission with HART protocol
overlaid on the 4–20 mA loop.
The Highway Addressable Remote Transducer Protocol, also known as HART, is a communications protocol which ranks high in popularity among industry standards for process measurement and control connectivity. HART combines analog and digital technology to function as an automation protocol.

A primary reason for the primacy of HART in the process control industry is the fact that it functions in tandem with the long standing and ubiquitous process industry standard 4-20 mA current loops.

The 4-20 mA loops are simple in both construction and functionality, and the HART protocol couples with their technology to maintain communication between controllers and industry devices. PID controllers, SCADA systems, and programmable logic controllers all utilize HART in conjunction with 4-20 mA loops.

HART instruments have the capacity to perform in two main modes of operation: point to point, also known as analog/digital mode, and multi-drop mode. The point to point mode joins digital signals with the aforementioned 4-20 mA current loop in order to serve as signal protocols between the controller and a specific measuring instrument. The polling address of the instrument in question is designated with the number ì0î. A signal specified by the user is designated as the 4-20 mA signal, and then other signals are overlaid on the 4-20 mA signal. A common example is an indication of pressure being sent as a 4-20 mA signal to represent a range of pressures; temperature, another common process control variable, can also be sent digitally using the same wires. In point to point, HART’s digital instrumentation functions as a sort of digital current loop interface, allowing for use over moderate distances.

HART in multi-drop mode differs from point to point. In multi-drop mode, the analog loop current is given a fixed designation of 4 mA and multiple instruments can participate in a single signal loop. Each one of the instruments participating in the signal loop need to have their own unique address.

Image courtesy of  Dougsim (Own work) [CC BY-SA 4.0], via Wikimedia Commons

Tuesday, October 24, 2017

Vibration Analysis in Manufacturing and Process Control

Vibration graph
Image courtesy of Wikipedia
As all of us who ride or drive an automobile with some regularity know, certain mechanical faults or problems produce symptoms that can be detected by our sense of feel. Vibrations felt in the steering wheel can be an indicator of an out-of-balance wheel or looseness in the steering linkage. Transmission gear problems can be felt on the shift linkage. Looseness in exhaust system components can sometimes be felt as vibrations in the floorboard. The common thread with all these problems is that degeneration of some mechanical device beyond permissible operational design limitations has manifested itself by the generation of abnormal levels of vibration. What is vibration and what do we mean by levels of vibration? The dictionary defines vibration as “a periodic motion of the particles of an elastic body or medium in alternately opposite directions from the position of equilibrium when that equilibrium has been disturbed or the state of being vibrated or in vibratory motion as in (1) oscillation or (2) a quivering or trembling motion.”

The key elements to take away from this definition are vibration is motion, and this motion is cyclic around a position of equilibrium. How many times have you touched a machine to see if it was running? You are able to tell by touch if the motor is running because of vibration generated by motion of rotational machine components and the transmittal of these forces to the machine housing. Many parts of the machine are rotating and each one of these parts is generating its own distinctive pattern and level of vibration. The level and frequency of these vibrations are different and the human touch is not sensitive enough to discern these differences. This is where vibration detection instrumentation and signature analysis software can provide us the necessary sensitivity. Sensors are used to quantify the magnitude of vibration or how rough or smooth the machine is running. This is expressed as vibration amplitude. This magnitude of vibration is expressed as:

Displacement – The total distance traveled by the vibrating part from one extreme limit of travel to the other extreme limit of travel. This distance is also called the “peak-to-peak displacement.”

Velocity – A measurement of the speed at which a machine or machine component is moving as it undergoes oscillating motion.

Acceleration – The rate of change of velocity. Recognizing that vibrational forces are cyclic, both the magnitude of displacement and velocity change from a neutral or minimum value to some maximum. Acceleration is a value representing the maximum rate that velocity (speed of the displacement) is increasing.

GE Bently Nevada
GE Bently Nevada is a leading provider of vibration
analysis instruments and software.
Various transducers are available that will sense and provide an electrical output reflective of the vibrational displacement, velocity, or acceleration. The specific unit of measure to best evaluate the machine condition will be dependent on the machine speed and design. Several guidelines have been published to provide assistance in determination of the relative running condition of a machine. It should be said that guidelines are not absolute vibration limits above which the machine will fail and below which the machine will run indefinitely. It is impossible to establish absolute vibration limits. However, in setting up a predictive maintenance program, it is necessary to establish some severity criteria or limits above which action will be taken. Keep in mind that guidelines are not intended to be used for establishing vibration acceptance criteria for rebuilt or newly installed machines. They are to be used to evaluate the general or overall condition of machines that are already installed and operating in service. For those, setting up a predictive maintenance program, lacking experience or historical data, similar charts can serve as an excellent guide to get started.

As indicated earlier, many vibration signals are generated at one time. Once a magnitude of vibration exceeds some predetermined value, vibration signature analysis can be used in defining the machine location that is the source of the vibration and in need of repair or replacement. By using analysis equipment and software, the individual vibration signals are separated and displayed in a manner that defines the magnitude of vibration and frequency. With the understanding of machine design and operation, an individual schooled in vibration signature analysis can interpret this information to define the machine problem to a component level.

Vibration monitoring and analysis can be used to discover and diagnose a wide variety of problems related to rotating equipment. The following list provides some generally accepted abnormal equipment conditions/faults where this predictive maintenance technology can be of use in defining existing problems:
  • Unbalance
  • Eccentric rotors
  • Misalignment
  • Resonance problems
  • Mechanical looseness/weakness
  • Rotor rub
  • Sleeve-bearing problems
  • Rolling element bearing problems
  • Flow-induced vibration problems
  • Gear problems
  • Electrical problems
  • Belt drive problems
Analyzing equipment to determine the presence of these problems is not a simple and easily performed procedure. Properly performed and evaluated vibration signature analysis requires highly trained and skilled individuals, knowledgeable in both the technology and the equipment being tested. Determination of some of the problems listed is less straightforward than other problems and may require many hours of experience by the technician to properly diagnosis the condition.

To learn more about vibration analysis and critical asset monitoring, contact Flow-Tech at 410-666-3200 or visit http://www.flowtechonline.com.

Article abstracted from US DOE Operations & Maintenance Best Practices Release 3.0

Thursday, October 19, 2017

Centralized Gas Monitoring for Industry

Drager REGARD 7000
The Drager REGARD 7000 is a modular and highly expandable analysis system for monitoring various gases and vapors. Suitable for gas warning systems with various levels of complexity and numbers of transmitters, the Drager REGARD 7000 also features exceptional reliability and efficiency. An additional benefit is the backward compatibility with the REGARD.

For more information in Maryland or Virginia, contact Flow-Tech at 410666-3200 or visit http://www.flowtechonline.com.

Check out the video below to learn more about the Drager REGARD 7000. Thanks for watching.